Exercise 41

Use the joint Laplace and Fourier transform to solve the initial-value problem for transient water waves which satisfies (see Debnath 1994, p. 92)

$$
\begin{aligned}
& \nabla^{2} \phi=\phi_{x x}+\phi_{z z}=0, \quad-\infty<x<\infty,-\infty<z<0, t>0, \\
& \phi_{z}=\eta_{t}, \\
& \left.\phi_{t}+g \eta=-\frac{P}{\rho} p(x) e^{i \omega t}\right\} \quad \text { on } z=0, t>0, \\
& \phi(x, z, 0)=0=\eta(x, 0) \quad \text { for all } x \text { and } z
\end{aligned}
$$

where P and ρ are constants.

Solution

The PDEs for ϕ and η are defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve them. We define the Fourier transform with respect to x here as

$$
\mathcal{F}_{x}\{\phi(x, z, t)\}=\Phi(k, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \phi(x, z, t) d x
$$

which means the partial derivatives of ϕ with respect to x, z, and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial x^{n}}\right\}=(i k)^{n} \Phi(k, z, t) \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial z^{n}}\right\}=\frac{d^{n} \Phi}{d z^{n}} \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial t^{n}}\right\}=\frac{d^{n} \Phi}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the first PDE.

$$
\mathcal{F}_{x}\left\{\phi_{x x}+\phi_{z z}\right\}=\mathcal{F}_{x}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}_{x}\left\{\phi_{x x}\right\}+\mathcal{F}_{x}\left\{\phi_{z z}\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Expand the coefficient of Φ.

$$
-k^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Bring the term with Φ to the right side.

$$
\frac{d^{2} \Phi}{d z^{2}}=k^{2} \Phi
$$

We can write the solution to this ODE in terms of exponentials.

$$
\Phi(k, z, t)=A(k, t) e^{|k| z}+B(k, t) e^{-|k| z}
$$

In order for Φ to remain bounded as $z \rightarrow-\infty$, we require that $B(k, t)=0$. So we have

$$
\begin{equation*}
\Phi(k, z, t)=A(k, t) e^{|k| z} . \tag{1}
\end{equation*}
$$

Take the Fourier transform with respect to x of the boundary conditions now.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{z}\right\} & =\mathcal{F}_{x}\left\{\eta_{t}\right\} \\
\mathcal{F}_{x}\left\{\phi_{t}+g \eta\right\} & =\mathcal{F}_{x}\left\{-\frac{P}{\rho} p(x) e^{i \omega t}\right\}
\end{aligned}
$$

Use the linearity property.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{z}\right\} & =\mathcal{F}_{x}\left\{\eta_{t}\right\} \\
\mathcal{F}_{x}\left\{\phi_{t}\right\}+g \mathcal{F}_{x}\{\eta\} & =-\frac{P}{\rho} e^{i \omega t} \mathcal{F}_{x}\{p(x)\}
\end{aligned}
$$

Transform the partial derivatives.

$$
\begin{aligned}
\frac{d \Phi}{d z} & =\frac{d H}{d t} \\
\frac{d \Phi}{d t}+g H & =-\frac{P}{\rho} e^{i \omega t} \tilde{p}(k)
\end{aligned}
$$

Plug in the expression for Φ in equation (1) into these equations. These two equations hold at the boundary, so we have to evaluate these terms at $z=0$.

$$
\begin{align*}
A(k, t)|k| & =\frac{d H}{d t} \tag{2}\\
\frac{\partial A}{\partial t}+g H & =-\frac{P}{\rho} e^{i \omega t} \tilde{p}(k) \tag{3}
\end{align*}
$$

We now have a system of two equations for two unknowns, A and H. Differentiate both sides of equation (3) with respect to t.

$$
\begin{aligned}
A(k, t)|k| & =\frac{d H}{d t} \\
\frac{\partial^{2} A}{\partial t^{2}}+g \frac{d H}{d t} & =-\frac{i \omega P}{\rho} e^{i \omega t} \tilde{p}(k)
\end{aligned}
$$

Substitute the first equation into the second.

$$
\begin{equation*}
\frac{\partial^{2} A}{\partial t^{2}}+g|k| A=-\frac{i \omega P}{\rho} e^{i \omega t} \tilde{p}(k) \tag{4}
\end{equation*}
$$

This is a second-order inhomogeneous ODE, so the general solution is the sum of the complementary and particular solutions.

$$
A=A_{c}+A_{p}
$$

A_{c} is the solution to the associated homogeneous equation,

$$
\frac{\partial^{2} A}{\partial t^{2}}+g|k| A=0
$$

which has the solution

$$
A_{c}=C_{1}(k) \cos \sqrt{g|k|} t+C_{2}(k) \sin \sqrt{g|k|} t .
$$

The inhomogeneous term is an exponential, so A_{p} has the form $C_{3}(k) e^{i \omega t}$. Plug this form into equation (4) to determine $C_{3}(k)$.

$$
-C_{3}(k)\left(\omega^{2}-g|k|\right) e^{i \omega t}=-\frac{i \omega P}{\rho} e^{i \omega t} \tilde{p}(k) \quad \rightarrow \quad C_{3}(k)=\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)}
$$

The general solution to equation (4) is thus

$$
A(k, t)=C_{1}(k) \cos \sqrt{g|k|} t+C_{2}(k) \sin \sqrt{g|k|} t+\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} e^{i \omega t} .
$$

We use the provided initial conditions, $\phi(x, z, 0)=0$ and $\eta(x, 0)=0$, to determine $C_{1}(k)$ and $C_{2}(k)$. Take the Fourier transform of both sides of them.

$$
\begin{align*}
\phi(x, z, 0)=0 \quad \rightarrow \quad \mathcal{F}_{x}\{\phi(x, z, 0)\} & =\mathcal{F}_{x}\{0\} \\
\Phi(k, z, 0) & =0 \tag{5}\\
\eta(x, 0)=0 \quad \rightarrow \quad \mathcal{F}_{x}\{\eta(x, 0)\} & =\mathcal{F}_{x}\{0\} \\
H(k, 0) & =0 \tag{6}
\end{align*}
$$

Substituting $t=0$ into equation (1) and using equation (5), we obtain

$$
\Phi(k, z, 0)=A(k, 0) e^{|k| z}=0 \quad \rightarrow \quad A(k, 0)=0 .
$$

We can now determine $C_{1}(k)$.

$$
A(k, 0)=C_{1}(k)+\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)}=0 \quad \rightarrow \quad C_{1}(k)=-\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)}
$$

Solve equation (3) for $H(k, t)$.

$$
H(k, t)=-\frac{1}{g}\left[\frac{\partial A}{\partial t}+\frac{P}{\rho} \tilde{p}(k) e^{i \omega t}\right]
$$

Using equation (6) and solving the resulting equation for $C_{2}(k)$ yields

$$
C_{2}(k)=\frac{\sqrt{g|k|} P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} .
$$

With $C_{1}(k)$ and $C_{2}(k)$ determined, $A(k, t)$ is known and consequently $H(k, t)$ and $\Phi(k, z, t)$ are as well.

$$
\begin{aligned}
\Phi(k, z, t) & =\left[-\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} \cos \sqrt{g|k|} t+\frac{\sqrt{g|k|} P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} \sin \sqrt{g|k|} t+\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} e^{i \omega t}\right] e^{|k| z} \\
H(k, t) & =\frac{1}{\rho\left(g|k|-\omega^{2}\right)}\left[P \tilde{p}(k)|k|\left(-e^{i \omega t}+\cos \sqrt{g|k| t}\right)+\frac{i P \tilde{p}(k) \omega \sqrt{|k|}}{\sqrt{g}} \sin \sqrt{g|k| t}\right]
\end{aligned}
$$

Factoring $\Phi(k, z, t)$ and $H(k, t)$ gives

$$
\begin{aligned}
\Phi(k, z, t) & =\frac{P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)}\left[i \omega\left(e^{i \omega t}-\cos \sqrt{g|k| t}\right)+\sqrt{g|k|} \sin \sqrt{g|k| t}\right] e^{|k| z} \\
H(k, t) & =\frac{P \tilde{p}(k)|k|}{\rho\left(g|k|-\omega^{2}\right)}\left[-e^{i \omega t}+\cos \sqrt{g|k|} t+\frac{i \omega}{\sqrt{g|k|}} \sin \sqrt{g|k| t}\right] .
\end{aligned}
$$

Taking the inverse Fourier transform of $\Phi(k, z, t)$ and $H(k, t)$ gives us $\phi(x, z, t)$ and $\eta(x, t)$, respectively.

$$
\begin{aligned}
\phi(x, z, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, z, t) e^{i k x} d k \\
\eta(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} H(k, t) e^{i k x} d k
\end{aligned}
$$

Note that $\tilde{p}(k)$ is the Fourier transform of $p(x)$.

$$
\tilde{p}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} p(x) d x
$$

