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Exercise 41

Use the joint Laplace and Fourier transform to solve the initial-value problem for transient water
waves which satisfies (see Debnath 1994, p. 92)

∇2φ = φxx + φzz = 0, −∞ < x <∞, −∞ < z < 0, t > 0,

φz = ηt,

φt + gη =
P

ρ
p(x)eiωt

}
on z = 0, t > 0,

φ(x, z, 0) = 0 = η(x, 0) for all x and z,

where P and ρ are constants.

Solution

The PDEs for φ and η are defined for −∞ < x <∞, so we can apply the Fourier transform to
solve them. We define the Fourier transform with respect to x here as

Fx{φ(x, z, t)} = Φ(k, z, t) =
1√
2π

ˆ ∞
−∞

e−ikxφ(x, z, t) dx,

which means the partial derivatives of φ with respect to x, z, and t transform as follows.

Fx

{
∂nφ

∂xn

}
= (ik)nΦ(k, z, t)

Fx

{
∂nφ

∂zn

}
=
dnΦ

dzn

Fx

{
∂nφ

∂tn

}
=
dnΦ

dtn

Take the Fourier transform of both sides of the first PDE.

Fx{φxx + φzz} = Fx{0}

The Fourier transform is a linear operator.

Fx{φxx}+ Fx{φzz} = 0

Transform the derivatives with the relations above.

(ik)2Φ +
d2Φ

dz2
= 0

Expand the coefficient of Φ.

−k2Φ +
d2Φ

dz2
= 0

Bring the term with Φ to the right side.

d2Φ

dz2
= k2Φ
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We can write the solution to this ODE in terms of exponentials.

Φ(k, z, t) = A(k, t)e|k|z +B(k, t)e−|k|z

In order for Φ to remain bounded as z → −∞, we require that B(k, t) = 0. So we have

Φ(k, z, t) = A(k, t)e|k|z. (1)

Take the Fourier transform with respect to x of the boundary conditions now.

Fx{φz} = Fx{ηt}

Fx{φt + gη} = Fx

{
−P
ρ
p(x)eiωt

}
Use the linearity property.

Fx{φz} = Fx{ηt}

Fx{φt}+ gFx{η} = −P
ρ
eiωtFx{p(x)}

Transform the partial derivatives.

dΦ

dz
=
dH

dt
dΦ

dt
+ gH = −P

ρ
eiωtp̃(k)

Plug in the expression for Φ in equation (1) into these equations. These two equations hold at the
boundary, so we have to evaluate these terms at z = 0.

A(k, t)|k| = dH

dt
(2)

∂A

∂t
+ gH = −P

ρ
eiωtp̃(k) (3)

We now have a system of two equations for two unknowns, A and H. Differentiate both sides of
equation (3) with respect to t.

A(k, t)|k| = dH

dt
∂2A

∂t2
+ g

dH

dt
= − iωP

ρ
eiωtp̃(k)

Substitute the first equation into the second.

∂2A

∂t2
+ g|k|A = − iωP

ρ
eiωtp̃(k) (4)

This is a second-order inhomogeneous ODE, so the general solution is the sum of the
complementary and particular solutions.

A = Ac +Ap
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Ac is the solution to the associated homogeneous equation,

∂2A

∂t2
+ g|k|A = 0,

which has the solution
Ac = C1(k) cos

√
g|k|t+ C2(k) sin

√
g|k|t.

The inhomogeneous term is an exponential, so Ap has the form C3(k)eiωt. Plug this form into
equation (4) to determine C3(k).

−C3(k)(ω2 − g|k|)eiωt = − iωP
ρ
eiωtp̃(k) → C3(k) =

iωP p̃(k)

ρ(ω2 − g|k|)

The general solution to equation (4) is thus

A(k, t) = C1(k) cos
√
g|k|t+ C2(k) sin

√
g|k|t+

iωP p̃(k)

ρ(ω2 − g|k|)
eiωt.

We use the provided initial conditions, φ(x, z, 0) = 0 and η(x, 0) = 0, to determine C1(k) and
C2(k). Take the Fourier transform of both sides of them.

φ(x, z, 0) = 0 → Fx{φ(x, z, 0)} = Fx{0}
Φ(k, z, 0) = 0 (5)

η(x, 0) = 0 → Fx{η(x, 0)} = Fx{0}
H(k, 0) = 0 (6)

Substituting t = 0 into equation (1) and using equation (5), we obtain

Φ(k, z, 0) = A(k, 0)e|k|z = 0 → A(k, 0) = 0.

We can now determine C1(k).

A(k, 0) = C1(k) +
iωP p̃(k)

ρ(ω2 − g|k|)
= 0 → C1(k) = − iωP p̃(k)

ρ(ω2 − g|k|)

Solve equation (3) for H(k, t).

H(k, t) = −1

g

[
∂A

∂t
+
P

ρ
p̃(k)eiωt

]
Using equation (6) and solving the resulting equation for C2(k) yields

C2(k) =

√
g|k|P p̃(k)

ρ(ω2 − g|k|)
.

With C1(k) and C2(k) determined, A(k, t) is known and consequently H(k, t) and Φ(k, z, t) are as
well.

Φ(k, z, t) =

[
− iωP p̃(k)

ρ(ω2 − g|k|)
cos
√
g|k|t+

√
g|k|P p̃(k)

ρ(ω2 − g|k|)
sin
√
g|k|t+

iωP p̃(k)

ρ(ω2 − g|k|)
eiωt

]
e|k|z

H(k, t) =
1

ρ(g|k| − ω2)

[
P p̃(k)|k|

(
−eiωt + cos

√
g|k|t

)
+
iP p̃(k)ω

√
|k|

√
g

sin
√
g|k|t

]
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Factoring Φ(k, z, t) and H(k, t) gives

Φ(k, z, t) =
P p̃(k)

ρ(ω2 − g|k|)

[
iω
(
eiωt − cos

√
g|k|t

)
+
√
g|k| sin

√
g|k|t

]
e|k|z

H(k, t) =
P p̃(k)|k|

ρ(g|k| − ω2)

[
−eiωt + cos

√
g|k|t+

iω√
g|k|

sin
√
g|k|t

]
.

Taking the inverse Fourier transform of Φ(k, z, t) and H(k, t) gives us φ(x, z, t) and η(x, t),
respectively.

φ(x, z, t) =
1√
2π

ˆ ∞
−∞

Φ(k, z, t)eikx dk

η(x, t) =
1√
2π

ˆ ∞
−∞

H(k, t)eikx dk

Note that p̃(k) is the Fourier transform of p(x).

p̃(k) =
1√
2π

ˆ ∞
−∞

e−ikxp(x) dx
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